If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+40x=200
We move all terms to the left:
2x^2+40x-(200)=0
a = 2; b = 40; c = -200;
Δ = b2-4ac
Δ = 402-4·2·(-200)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40\sqrt{2}}{2*2}=\frac{-40-40\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40\sqrt{2}}{2*2}=\frac{-40+40\sqrt{2}}{4} $
| x-1.7/3.1=6 | | 2k-k-k+4k=16 | | 11x-29=8x+22 | | −8n+9=−6n+1 | | 2x-7=-5x;3(x-1)=-3(x-3) | | -14=2(8+3x) | | 3=7−2c | | 2x/3-2x=5/6 | | 17c+2c-14c-2c-2c=3 | | -2s+3=5s=24 | | x/3=x/6=7/2 | | t2+ 6= 9 | | 2x(3)+5=24 | | 2/3w+5=11 | | -2b+-4=-10 | | 18=6(x-6) | | (8k+k^2-6)=-(-10k+7-2k^2) | | 4x-18=42 | | x/1.1+3.6=4.3 | | j+2j+j=8 | | 3w-14=40 | | 6x-20=2x+11 | | -3x2+9x+12=0 | | 3x^-2×+4=0 | | -94-3x=-11x+170 | | 8x-5x-x-2x+x=4 | | 5/y=y/45 | | 2^3x=10 | | 11/5x=1 | | 29=x/2-15 | | 18c-3c+3c-9c=9 | | 2+8x=7+3x |